The United States faces energy shortages and increasing energy prices within the next few decades (Duncan 2001). Coal, petroleum, natural gas, and other mined fuels provide 75% of US electricity and 93% of other US energy needs (USBC 2001). On average, every year each American uses about 93,000 kilowatt-hours (kWh), equivalent to 8000 liters of oil, for all purposes, including transportation, heating, and cooling (USBC 2001). About 12 kWh (one liter of gasoline) costs as much as $0.50, and this cost is projected to increase significantly in the next decade (Schumer 2001).

The United States, having consumed from 82% to 88% of its proved oil reserves (API 1999), now imports more than 60% of its oil at an annual cost of approximately $75 billion (USBC 2001). General production, import, and consumption trends and forecasts suggest that within 20 years the United States will be importing from 80% to 90% of its oil. The US population of more than 285 million is growing each year, and the 3.6 trillion kWh of electricity produced annually at a cost of $0.07 to $0.20 per kWh are becoming insufficient for the country’s current needs. As energy becomes more scarce and more expensive, the future contribution of renewable energy sources will be vital (USBC 2001).

Fossil fuel consumption is the major contributor to the increasing concentration of carbon dioxide (CO₂) in the atmosphere, a key cause of global warming (Schneider et al. 2000). Global warming reduces agricultural production and causes other biological and social problems (Schneider et al. 2000). The United States, with less than 4% of the world population, emits 22% of the CO₂ from burning fossil fuels, more than any other nation. Reducing fossil fuel consumption may slow the rate of global warming (Schneider et al. 2000).

Diverse renewable energy sources currently provide only about 8% of US needs and about 14% of world needs (table 1), although the development and use of renewable energy is expected to increase as fossil fuel supplies decline. Several different technologies are projected to provide the United States most of its renewable energy in the future: hydroelectric systems, biomass, wind power, solar thermal systems, photovoltaic systems, passive energy systems, geothermal systems, biogas, ethanol, methanol, and vegetable oil. In this article, we assess the potential of these various renewable energy technologies for supplying the future needs of the United States and the world in terms of land requirements, environmental benefits and risks, and energetic and economic costs.

Hydroelectric systems

Hydropower contributes significantly to world energy, providing 6.5% of the supply (table 1). In the United States, hydroelectric plants produce approximately 989 billion kWh (1 kWh = 860 kilocalories [kcal] = 3.6 megajoules), or 11% of the nation’s electricity, each year at a cost of $0.02 per kWh (table 2; USBC 2001). Development and rehabilitation of existing dams in the United States could produce an additional 60 billion kWh per year (table 3).

Hydroelectric plants, however, require considerable land for their water storage reservoirs. An average of 75,000 hectares (ha) of reservoir land area and 14 trillion liters of water are required per 1 billion kWh per year produced (table 2; Pimentel et al. 1994, Gleick and Adams 2000). Based on regional

David Pimentel (dp18@cornell.edu) is a professor, and Megan Herz, Michele Glickstein, Mathew Zimmerman, Richard Allen, Katrina Becker, Jeff Evans, Benita Hussain, Ryan Sarsfeld, Anat Grosfeld, and Thomas Seidel are graduate students, in the College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853-0901. © 2002 American Institute of Biological Sciences.
estimates of US land use and average annual energy generation, reservoirs currently cover approximately 26 million ha of the total 917 million ha of land area in the United States (Pimentel 2001). To develop the remaining best candidate sites, assuming land requirements similar to those in past developments, an additional 17 million ha of land would be required for water storage (table 3).

Despite the benefits of hydroelectric power, the plants cause major environmental problems. The impounded water frequently covers valuable, agriculturally productive, alluvial bottomland. Furthermore, dams alter the existing plants, animals, and microbes in the ecosystem (Ligon et al. 1995, Nilsson and Berggren 2000). Fish species may significantly decline in river systems because of these numerous ecological changes (Brown and Moyle 1993). Within the reservoirs, fluctuations of water levels alter shorelines, cause downstream erosion, change physiochemical factors such as water temperature and chemicals, and affect aquatic communities. Sediments build up behind the dams, reducing their effectiveness and creating another major environmental problem.

Biomass energy systems Although most biomass is burned for cooking and heating, it can also be converted into electricity. Under sustainable forest conditions in both temperate and tropical ecosystems, approximately 3 dry metric tons (t) per ha per year of woody biomass can be harvested sustainably (Birdsey 1992, Repetto 1992, Trainer 1995, Ferguson 2001). Although this amount of woody biomass has a gross energy yield of 13.5 million kcal, approximately 33 liters of diesel fuel per ha, plus the embodied energy, are expended for cutting and collecting the wood for transport to an electric power plant. Thus, the energy input–output ratio for such a system is calculated to be 1:22.

The cost of producing 1 kWh of electricity from woody biomass is about $0.058, which is competitive with other systems for electricity production (table 2). Approximately 3 kWh of thermal energy is expended to produce 1 kWh of electricity, an energy input–output ratio of 1:7 (table 2; Pimentel 2001).

To calculate the energy input–output ratio for such a system, we used the following equation:

\[\text{Input} = \text{Output} + \text{Efficiency} \]

where Input is the total energy input, Output is the total energy output, and Efficiency is the ratio of output to input. In this case, the efficiency is 22% (1:22).

Table 1. Fossil and solar energy use in the United States and world, in kilowatt-hours and quads.

<table>
<thead>
<tr>
<th>Form of energy</th>
<th>United States kWh x 10^9</th>
<th>United States Quads</th>
<th>World kWh x 10^9</th>
<th>World Quads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td>10,973.1</td>
<td>43.271</td>
<td>43,271.7</td>
<td>148.70b</td>
</tr>
<tr>
<td>Natural gas</td>
<td>6431.1</td>
<td>24,414.9</td>
<td>83.90b</td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>6314.7</td>
<td>27,295.8</td>
<td>93.80b</td>
<td></td>
</tr>
<tr>
<td>Nuclear power</td>
<td>2249.4</td>
<td>6984.0</td>
<td>24.00b</td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>1047.6</td>
<td>8439.0</td>
<td>29.00</td>
<td></td>
</tr>
<tr>
<td>Hydroelectric power</td>
<td>989.4</td>
<td>7740.6</td>
<td>26.60b</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td>93.1</td>
<td>291.0</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Biofuels (ethanol)</td>
<td>26.2</td>
<td>52.4</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Wind energy</td>
<td>11.6</td>
<td>232.8</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Solar thermal</td>
<td>11.6</td>
<td>11.6</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>11.6</td>
<td>11.6</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Total consumption</td>
<td>28,159.4</td>
<td>118,745.4</td>
<td>408.06</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Land resource requirements and total energy inputs for construction of facilities that produce 1 billion kilowatt-hours of electricity per year.

<table>
<thead>
<tr>
<th>Electrical energy technology</th>
<th>Land required (hectares)</th>
<th>Energy (input–output ratio)</th>
<th>Cost per kWh ($)</th>
<th>Life in years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroelectric power</td>
<td>75,000a</td>
<td>1:24</td>
<td>0.020b</td>
<td>30</td>
</tr>
<tr>
<td>Biomass</td>
<td>200,000</td>
<td>1:7</td>
<td>0.058b</td>
<td>30</td>
</tr>
<tr>
<td>Parabolic troughs</td>
<td>1100a</td>
<td>1:5</td>
<td>0.070–0.090b</td>
<td>30</td>
</tr>
<tr>
<td>Solar ponds</td>
<td>5200d</td>
<td>1:4</td>
<td>0.150</td>
<td>30</td>
</tr>
<tr>
<td>Wind power</td>
<td>13,700d</td>
<td>1:5</td>
<td>0.070</td>
<td>30</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>2800d</td>
<td>1:7</td>
<td>0.120–0.200</td>
<td>30</td>
</tr>
<tr>
<td>Biogas</td>
<td>———</td>
<td>1:17–3.3</td>
<td>0.020b</td>
<td>30</td>
</tr>
<tr>
<td>Geothermal</td>
<td>30</td>
<td>1:48</td>
<td>0.056</td>
<td>20</td>
</tr>
<tr>
<td>Coal (nonrenewable)</td>
<td>166e</td>
<td>1:8</td>
<td>0.030–0.050b</td>
<td>30</td>
</tr>
<tr>
<td>Nuclear power (nonrenewable)</td>
<td>31f</td>
<td>1:5</td>
<td>0.050</td>
<td>30</td>
</tr>
<tr>
<td>Natural gas (nonrenewable)</td>
<td>134g</td>
<td>1:8</td>
<td>0.030–0.050b</td>
<td>30</td>
</tr>
</tbody>
</table>

Note: A quad is a unit of energy equal to 1 quadrillion British thermal units.
 a. Adapted from USBC (2001).
 b. Adapted from DOE/EIA (2001).
 c. Adapted from Pimentel (2001).
alents of fossil energy per capita, compared with nearly 8000 liters of oil equivalents of fossil energy used per capita in the United States.

Woody biomass could supply the United States with about 1.5×10^{12} kWh (5 quads thermal equivalent) of its total gross energy supply by the year 2050, provided that approximately 102 million ha were available (table 3). A city of 100,000 people using the biomass from a sustainable forest (3 t per ha per year) for electricity would require approximately 200,000 ha of forest area, based on an average electrical demand of slightly more than 1 billion kWh (electrical energy [e]) (860 kcal = 1 kWh) (table 2).

The environmental effects of burning biomass are less harmful than those associated with coal, but more harmful than those associated with natural gas (Pimentel 2001). Biomass combustion releases more than 200 different chemical pollutants, including 14 carcinogens and 4 cocarcinogens, into the atmosphere (Alfheim and Ramdahl 1986, Godish 1991). Globally, but especially in developing nations where people cook with fuelwood over open fires, approximately four billion people suffer from continuous exposure to smoke (World Bank 1992, WHO/UNEP 1993, Reddy et al. 1997). In the United States, wood smoke kills 30,000 people each year (EPA 2002). However, the pollutants from electric plants that use wood and other biomass can be controlled.

Wind power
For many centuries, wind power has provided energy to pump water and to run mills and other machines. Today, turbines with a capacity of at least 500 kW produce most commercially wind-generated electricity. Operating at an ideal location, one of these turbines can run at maximum 30% efficiency and yield an energy output of 1.3 million kWh (e) per year (AWEA 2000a). An initial investment of approximately $500,000 for a 500 kW capacity turbine (Nelson 1996), operating at 30% efficiency, will yield an input–output ratio of 1:5 over 30 years of operation (table 2). During the 30-year life of the system, the annual operating costs amount to $40,500 (Nelson 1996). The estimated cost of electricity generated is $0.07 per kWh (e) (table 2).

In the United States, 2502 megawatts (MW) of installed wind generators produce about 6.6 billion kWh of electrical energy per year (Chambers 2000). The American Wind Energy Association (AWEA 2000b) estimates that the United States could support a capacity of 30,000 MW by the year 2010, producing 75 billion kWh (e) per year at a capacity of 30%, or approximately 2% of the annual US electrical consumption. If all economically feasible land sites were developed, the full potential of wind power would be about 675 billion kWh (e) (AWEA 2000b). Offshore sites could provide an additional 102 billion kWh (e) (Gaudiosi 1996), making the total estimated potential of wind power 777 billion kWh (e), or 23% of current electrical use.

Widespread development of wind power is limited by the availability of sites with sufficient wind (at least 20 kilometers [km] per hour) and the number of wind machines that the site can accommodate. In California’s Altamont Pass Wind Resource Area, an average of one 50 kW turbine per 1.8 ha allows sufficient spacing to produce maximum power (Smith and Ilyin 1991). Based on this figure, approximately 13,700 ha of land is needed to supply 1 billion kWh per year (table 2). Because the turbines themselves occupy only approximately 2% of the area, most of the land can be used for vegetables, nursery stock, and cattle (DP Energy 2002, NRC 2002). However, it may be impractical to produce corn or other grains because the heavy equipment used in this type of farming could not operate easily between the turbines.

An investigation of the environmental impacts of wind energy production reveals a few hazards. Locating the wind turbines in or near the flyways of migrating birds and wildlife refuges may result in birds colliding with the supporting towers and rotating blades (Kellet 1990). For this reason,

Table 3. Current and projected US gross annual energy supply from various renewable energy technologies, based on the thermal equivalent and required land area.

<table>
<thead>
<tr>
<th>Energy technology</th>
<th>Current (2000) kWh x 10^9</th>
<th>Quads</th>
<th>Million hectares</th>
<th>Projected (2050) kWh x 10^9</th>
<th>Quads</th>
<th>Million hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>1047.6</td>
<td>3.600</td>
<td>75</td>
<td>1455.0</td>
<td>5</td>
<td>102</td>
</tr>
<tr>
<td>Hydroelectric power</td>
<td>1134.9</td>
<td>3.900</td>
<td>26</td>
<td>1455.0</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>Geothermal energy</td>
<td>87.3</td>
<td>0.300</td>
<td>0.400</td>
<td>349.2</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Solar thermal energy</td>
<td>< 11.6</td>
<td>< 0.040</td>
<td>< 0.010</td>
<td>291.0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>< 11.6</td>
<td>< 0.040</td>
<td>< 0.010</td>
<td>3201.0</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Wind power</td>
<td>11.6</td>
<td>0.040</td>
<td>0.500</td>
<td>2037.0</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Biogas</td>
<td>< 0.3</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>145.5</td>
<td>0.5</td>
<td>0.01</td>
</tr>
<tr>
<td>Passive solar power</td>
<td>87.5</td>
<td>0.300</td>
<td>0</td>
<td>1746.0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>2392.2</td>
<td>82.210</td>
<td>101.921</td>
<td>10,679.7</td>
<td>45.7</td>
<td>159.01</td>
</tr>
</tbody>
</table>

b. This is the equivalent land area required to produce 3 metric tons per hectare, plus the energy required for harvesting and transport.
c. Total area based on an average of 75,000 hectares per reservoir area per 1 billion kilowatt-hours per year produced.
d. Pimentel et al. (1994).
Clarke (1991) suggests that wind farms be located at least 300 meters (m) from nature reserves to reduce the risk to birds. The estimated 13,000 wind turbines installed in the United States have killed fewer than 300 birds per year (Kerlinger 2000). Proper siting and improved repellant technology, such as strobe lights or paint patterns, might further reduce the number of birds killed.

The rotating magnets in the turbine electrical generator produce a low level of electromagnetic interference that can affect television and radio signals within 2 to 3 km of large installations (IEA 1987). Fortunately, with the widespread use of cable networks or line-of-sight microwave satellite transmission, both television and radio are unaffected by this interference.

The noise caused by rotating blades is another unavoidable side effect of wind turbine operation. Beyond 2.1 km, however, the largest turbines are inaudible even downwind. At a distance of 400 m, the noise level is about 56 decibels (IEA 1987), corresponding roughly to the noise level of a home air-conditioning unit.

Solar thermal conversion systems

Solar thermal energy systems collect the sun's radiant energy and convert it into heat. This heat can be used directly for household and industrial purposes or to produce steam to drive turbines that produce electricity. These systems range in complexity from solar ponds to electricity-generating parabolic troughs. In the material that follows, we convert thermal energy into electricity to facilitate comparison with other solar energy technologies.

Solar ponds. Solar ponds are used to capture radiation and store the energy at temperatures of nearly 100 degrees Celsius (°C). Constructed ponds can be made into solar ponds by creating a layered salt concentration gradient. The layers prevent natural convection, trapping the heat collected from solar radiation in the bottom layer of brine. The hot brine from the bottom of the pond is piped out to use for heat, for generating electricity, or both.

For successful operation of a solar pond, the salt concentration gradient and the water level must be maintained. A solar pond covering 4000 ha loses approximately 3 billion liters of water per year (750,000 liters per ha per year) under arid conditions (Tabor and Doran 1990). The solar ponds in Israel have been closed because of such problems. To counteract the water loss and upward diffusion of salt in the ponds, the dilute salt water at the surface of the ponds has to be replaced with fresh water and salt added to the lower layer.

The efficiency of solar ponds in converting solar radiation into heat is estimated to be approximately 1:4 (that is, 1 kWh of input provides 4 kWh of output), assuming a 30-year life for the solar pond (table 2). Electricity produced by a 100 ha (1 km²) solar pond costs approximately $0.15 per kWh (Kishore 1993).

Some hazards are associated with solar ponds, but most can be avoided with careful management. It is essential to use plastic liners to make the ponds leakproof and prevent contamination of the adjacent soil and groundwater with salt. The degradation of soil quality caused by sodium chloride can be avoided by using an ammonium salt fertilizer (Hull 1986). Burrowing animals must be kept away from the ponds by buried screening (Dickson and Yates 1983).

Parabolic troughs. Another solar thermal technology that concentrates solar radiation for large-scale energy production is the parabolic trough. A parabolic trough, shaped like the bottom half of a large drainpipe, reflects sunlight to a central receiver tube that runs above it. Pressurized water and other fluids are heated in the tube and used to generate steam, which can drive turbogenerators for electricity production or provide heat energy for industry.

Parabolic troughs that have entered the commercial market have the potential for efficient electricity production because they can achieve high turbine inlet temperatures (Winter et al. 1991). Assuming peak efficiency and favorable sunlight conditions, the land requirements for the central receiver technology are approximately 1100 ha per 1 billion kWh per year (table 2). The energy input–output ratio is calculated to be 1:5 (table 2). Solar thermal receivers are estimated to produce electricity at a cost of approximately $0.07 to $0.09 per kWh (DOE/EREN 2001).

The potential environmental impacts of solar thermal receivers include the accidental or emergency release of toxic chemicals used in the heat transfer system (Baechler and Lee 1991). Water scarcity can also be a problem in arid regions.

Photovoltaic systems

Photovoltaic cells have the potential to provide a significant portion of future US and world electrical energy (Gregory et al. 1997). Photovoltaic cells produce electricity when sunlight excites electrons in the cells. The most promising photovoltaic cells in terms of cost, mass production, and relatively high efficiency are those manufactured using silicon. Because the size of the unit is flexible and adaptable, photovoltaic cells can be used in homes, industries, and utilities.

However, photovoltaic cells need improvements to make them economically competitive before their use can become widespread. Test cells have reached efficiencies ranging from 20% to 25% (Sorensen 2000), but the durability of photovoltaic cells must be strengthened and production costs reduced several times to make their use economically feasible.

Production of electricity from photovoltaic cells currently costs $0.12 to $0.20 per kWh (DOE 2000). Using mass-produced photovoltaic cells with about 18% efficiency, 1 billion kWh per year of electricity could be produced on approximately 2800 ha of land, which is sufficient to supply the electrical energy needs of 100,000 people (table 2; DOE 2001). Locating the photovoltaic cells on the roofs of homes, industries, and other buildings would reduce the need for additional land by an estimated 20% and reduce transmission costs. However, because storage systems such as batteries...
cannot store energy for extended periods, photovoltaics require conventional backup systems.

The energy input for making the structural materials of a photovoltaic system capable of delivering 1 billion kWh during a life of 30 years is calculated to be approximately 143 million kWh. Thus, the energy input–output ratio for the modules is about 1:7 (table 2; Knapp and Jester 2000).

The major environmental problem associated with photovoltaic systems is the use of toxic chemicals, such as cadmium sulfide and gallium arsenide, in their manufacture (Bradley 1997). Because these chemicals are highly toxic and persist in the environment for centuries, disposal and recycling of the materials in inoperative cells could become a major problem.

Hydrogen and fuel cells

Using solar electric technologies for its production, gaseous hydrogen produced by the electrolysis of water has the potential to serve as a renewable fuel to power vehicles and generate electricity. In addition, hydrogen can be used as an energy storage system for various electric solar energy technologies (Winter and Nitsch 1988, MacKenzie 1994).

The material and energy inputs for a hydrogen production facility are primarily those needed to build and run a solar electric production facility, like photovoltaics and hydropower. The energy required to produce 1 billion kWh of hydrogen is 1.4 billion kWh of electricity (Ogden and Nitsch 1993, Kreutz and Ogden 2000). Photovoltaic cells (table 2) currently require 2800 ha per 1 billion kWh; therefore, a total of 3920 ha would be needed to supply the equivalent of 1 billion kWh of hydrogen fuel. The water required for electrolytic production of 1 billion kWh per year equivalent of hydrogen is approximately 300 million liters per year (Voigt 1984). On a per capita basis, this amounts to 3000 liters of water per year. The liquefaction of hydrogen requires significant energy inputs because the hydrogen must be cooled to about –253˚C and pressurized. About 30% of the hydrogen energy is required for the liquefaction process (Pescha 1992, Trainer 1995).

Liquid hydrogen fuel occupies about three times the volume of an energy equivalent of gasoline. Storing 25 kg of gasoline requires a tank weighing 17 kg, whereas storing 9.5 kg of hydrogen requires a tank weighing 55 kg (Pescha 1987, 1992). Although the hydrogen storage vessel is large, hydrogen burns 1.33 times more efficiently than gasoline in automobiles (Bockris and Wass 1988). In tests, a Plymouth liquid hydrogen vehicle, with a tank weighing about 90 kg and 144 liters of liquid hydrogen, has a cruising range in traffic of 480 km with a fuel efficiency of 3.3 km per liter (MacKenzie 1994). However, even taking into account its greater fuel efficiency, commercial hydrogen is more expensive at present than gasoline. About 3.7 kg of gasoline sells for about $1.20, whereas 1 kg of liquid hydrogen with the same energy equivalent sells for about $2.70 (Ecoglobe 2001).

Fuel cells using hydrogen are an environmentally clean, quiet, and efficient method of generating electricity and heat from natural gas and other fuels. Fuel cells are electrochemical devices, much like storage batteries, that use energy from the chemical synthesis of water to produce electricity. The fuel cell provides a way to burn hydrogen using oxygen, capturing the electrical energy released (Larminie and Dicks 2000). Stored hydrogen is fed into a fuel cell apparatus along with oxygen from the atmosphere, producing effective electrical energy (Larminie and Dicks 2000). The conversion of hydrogen into direct current (DC) using a fuel cell is about 40% efficient.

The major costs of fuel cells are the electrolytes, catalysts, and storage. Phosphoric acid fuel cells (PAFCs) and proton exchange membrane fuel cells (PEMs) are the most widely used and most efficient. PAFCs have an efficiency of 40% to 45%, compared to diesel engine efficiency of 36% to 39%. However, PAFCs are complex and have high costs because they operate at temperatures of 50’ to 100˚C (DOE 1999). A fuel cell PEM engine costs $500 per kW, compared to $50 per kW for a gasoline engine (DOE 1999), leading to a total price of approximately $100,000 for an automobile running on fuel cells (Ogden and Nitsch 1993). These prices are for specially built vehicles, and the costs should decline as they are mass-produced. There is high demand for fuel cell–equipped vehicles in the United States (Larminie and Dicks 2000).

Hydrogen has serious explosive risks because it is difficult to contain within steel tanks. Mixing with oxygen can result in intense flames because hydrogen burns more quickly than gasoline and diesel fuels (Pescha 1992). Other environmental impacts are associated with the solar electric technologies used in hydrogen production. Water for the production of hydrogen may be a problem in arid regions of the United States and the world.

Passive heating and cooling of buildings

Approximately 20% (5.5 kWh x 10¹² [19 quads]) of the fossil energy used each year in the United States is used for heating and cooling buildings and for heating hot water (USBC 2001). At present only about 0.3 quads of energy are being saved by technologies that employ passive and active solar heating and cooling of buildings (table 3), which means that the potential for energy savings through increased energy efficiency and through the use of solar technologies for buildings is tremendous. Estimates suggest that the amount of energy lost through poorly insulated windows and doors is approximately 1.1 x 10¹² kWh (3.8 quads) each year—the approximate energy equivalent of all the oil pumped in Alaska per year (EETD 2001).

Both new and established homes can be fitted with solar heating and cooling systems. Installing passive solar systems in new homes is less costly than retrofitting existing homes. Based on the cost of construction and the amount of energy saved, measured in terms of reduced heating and cooling costs over 10 years, the estimated returns of passive solar heating and cooling range from $0.02 to $0.10 per kWh (Bilgen 1992).

Improvements in passive solar technology are making it more effective and less expensive than in the past (Bilgen 1994).
Articles

Water shortages are an important limitation in some regions (Roos and Karlsson 1994, DOE/EIA 2000). Current research in window design focuses on the development of “superwindows” with high insulating values and “smart” or electrochromic windows that can respond to electric current, temperature, or sunlight to control the admission of light energy (Roos and Karlsson 1994, DOE/EIA 2000).

Although none of the passive heating and cooling technologies requires land, they are not without problems. Some indirect problems with land use may arise, concerning such issues as tree removal, shading, and rights to the sun (Sisson and McPherson 1998). Glare from collectors and glazing may create hazards to automobile drivers and airline pilots. Also, when houses are designed to be extremely energy efficient and airtight, indoor air quality becomes a concern because of indoor air pollutants. However, well-designed ventilation systems with heat exchangers can take care of this problem.

Geothermal systems

Geothermal energy uses natural heat present in Earth’s interior. Examples are geysers and hot springs, like those at Yellowstone National Park in the United States. Geothermal energy sources are divided into three categories: hydrothermal, geopressed–geothermal, and hot dry rock. The hydrothermal system is the simplest and most commonly used one for electricity generation. The boiling liquid underground is utilized through wells, high internal pressure drives, or pumps. In the United States, nearly 3000 MW of installed electric generation comes from hydrothermal resources, and this figure is projected to increase by 1500 MW within the next 20 years (DOE/EIA 1991, 2001).

Most of the geothermal sites for electrical generation are located in California, Nevada, and Utah (DOE/EIA 1991). Electrical generation costs for geothermal plants in the West range from $0.06 to $0.30 per kWh (Gawlik and Kutscher 2000), suggesting that this technology offers potential to produce electricity economically. The US Department of Energy and the Energy Information Administration (DOE/EIA 1991, 2001) project that geothermal electric generation may grow three- to fourfold during the next 20 to 40 years. However, other investigations are not as optimistic and, in fact, suggest that geothermal energy systems are not renewable because the sources tend to decline over 40 to 100 years (Bradley 1997, Youngquist 1997, Cassedy 2000). Existing drilling opportunities for geothermal resources are limited to a few sites in the United States and the world (Youngquist 1997).

Potential environmental problems with geothermal energy include water shortages, air pollution, waste effluent disposal, subsidence, and noise (DOE/EIA 1991). The wastes produced in the sludge include toxic metals such as arsenic, boron, lead, mercury, radon, and vanadium (DOE/EIA 1991). Water shortages are an important limitation in some regions (OECD 1998). Geothermal systems produce hydrogen sulfide, a potential air pollutant; however, this product could be processed and removed for use in industry (Bradley 1997). Overall, the environmental costs of geothermal energy appear to be minimal relative to those of fossil fuel systems.

Biogas

Wet biomass materials can be converted effectively into usable energy with anaerobic microbes. In the United States, livestock dung is normally gravity fed or intermittently pumped through a plug-flow digester, which is a long, lined, insulated pit in the earth. Bacteria break down volatile solids in the manure and convert them into methane gas (65%) and carbon dioxide (35%) (Pimentel 2001). A flexible liner stretches over the pit and collects the biogas, inflating like a balloon. The biogas may be used to heat the digester, to heat farm buildings, or to produce electricity. A large facility capable of processing the dung from 500 cows costs nearly $300,000 (EPA 2000). The Environmental Protection Agency (EPA 2000) estimates that more than 2000 digesters could be economically installed in the United States.

The amount of biogas produced is determined by the temperature of the system, the microbes present, the volatile solids content of the feedstock, and the retention time. A plug-flow digester with an average manure retention time of about 16 days under winter conditions (–17.4°C) produced 452,000 kcal per day and used 262,000 kcal per day to heat the digester to 35°C (Jewell et al. 1980). Using the same digester during summer conditions (15.6°C) but reducing the retention time to 10.4 days, the yield in biogas was 524,000 kcal per day, with 157,000 kcal per day used for heating the digester (Jewell et al. 1980). The energy input–output ratios for the digester in these winter and summer conditions were 1:1.7 and 1:3.3, respectively. The energy output of biogas digesters has changed little over the past two decades (Sommer and Husted 1995, Hartman et al. 2000).

In developing countries such as India, biogas digesters typically treat the dung from 15 to 30 cattle from a single family or a small village. The resulting energy produced for cooking saves forests and preserves the nutrients in the dung. The capital cost for an Indian biogas unit ranges from $500 to $900 (Kishore 1993). The price value of one kWh of biogas in India is about $0.06 (Dutta et al. 1997). The total cost of producing about 10 million kcal of biogas is estimated to be $321, assuming the cost of labor to be $7 per hour; hence, the biogas has a value of $356. Manure processed for biogas has little odor and retains its fertilizer value (Pimentel 2001).

Biofuels: Ethanol, methanol, and vegetable oil

Petroleum, essential for the transportation sector and the chemical industry, makes up approximately 40% of total US energy consumption. Clearly, as the supply diminishes, a shift from petroleum to alternative liquid fuels will be necessary. This analysis focuses on the potential of three fuel types: ethanol, methanol, and vegetable oil. Burned in internal combustion engines, these fuels release less carbon monoxide and sulfur dioxide than gasoline and diesel fuels; however, because the production of most of these biofuels requires more total fossil energy than they produce as a biofuel, they contribute to air pollution and global warming (Pimentel 2001).
Ethanol production in the United States using corn is heavily subsidized by public tax money (Pimentel 2001). However, numerous studies have concluded that ethanol production does not enhance energy security, is not a renewable energy source, is not an economical fuel, and does not ensure clean air. Furthermore, its production uses land suitable for crop production (Weisz and Marshall 1980, Pimentel 1991, Youngquist 1997, Pimentel 2001). Ethanol produced using sugarcane is more energy efficient than that produced using corn; however, more fossil energy is still required to produce a liter of ethanol than the energy output in ethanol (Pimentel et al. 1988).

The total energy input to produce 1000 liters of ethanol in a large plant is 8.7 million kcal (Pimentel 2001). However, 1000 liters of ethanol has an energy value of only 5.1 million kcal and represents a net energy loss of 3.6 million kcal per 1000 liters of ethanol produced. Put another way, about 70% more energy is required to produce ethanol than the energy that ethanol contains (Pimentel 2001).

Methanol can be produced from a gasifier–pyrolysis reactor using biomass as a feedstock (Hos and Groenveld 1987, Jenkins 1999). The yield from 1 t of dry wood is about 370 liters of methanol (Ellington et al. 1993, Osburn and Osburn 2001). For a plant with economies of scale to operate efficiently, more than 1.5 million ha of sustainable forest would be required to supply it (Pimentel 2001). Biomass is generally not available in such enormous quantities, even from extensive forests, at acceptable prices. Most methanol today is produced from natural gas.

Processed vegetable oils from sunflower, soybean, rape, and other oil plants can be used as fuel in diesel engines. Unfortunately, producing vegetable oils for use in diesel engines is costly in terms of both time and energy (Pimentel 2001).

Transition to renewable energy alternatives

Despite the environmental and economic benefits of renewable energy, the transition to large-scale use of this energy presents some difficulties. Renewable energy technologies, all of which require land for collection and production, must compete with agriculture, forestry, and urbanization for land in the United States and the world. The United States already devotes as much prime cropland per capita to food production as is possible, given the size of the US population, and the world has only half the cropland per capita that it needs for a diverse diet and an adequate supply of essential nutrients (USBC 2001, USDA 2001). In fact, more than 3 billion people are already malnourished in the world (WHO 1996, 2000). According to some sources, the world and US population could double in the next 50 and 70 years, respectively; all the available cropland and forest land would be required to provide vital food and forest products (PRB 2001).

As the growing US and world populations demand increased electricity and liquid fuels, constraints like land availability and high investment costs will restrict the potential development of renewable energy technologies. Energy use is projected on the basis of current growth to increase from the current consumption of nearly 100 quads to approximately 145 quads by 2050 (USBC 2001). Land availability is also a problem, with the US population increasing by about 3.3 million people each year (USBC 2001). Each person added requires about 0.4 ha (1 acre) of land for urbanization and highways and about 0.5 ha of cropland (Vesterby and Krupa 2001).

Renewable energy systems require more labor than fossil energy systems. For example, wood-fired steam plants require several times more workers than coal-fired plants (Pimentel et al. 1988, Giampietro et al. 1998).

An additional complication in the transition to renewable energies is the relationship between the location of ideal production sites and large population centers. Ideal locations for renewable energy technologies are often remote, such as deserts of the American Southwest or wind farms located kilometers offshore. Although these sites provide the most efficient generation of energy, delivering this energy to consumers presents a logistical problem. For instance, networks of distribution cables must be installed, costing about $179,000 per kilometer of 115-kilovolt lines (DOE/EIA 2002). A percentage of the power delivered is lost as a function of electrical resistance in the distribution cable. There are five complex alternating current electrical networks in North America, and four of these are tied together by DC lines (Casazz 1996). Based on these networks, it is estimated that electricity can be transmitted up to 1500 km.

A sixfold increase in installed technologies would provide the United States with approximately 13.1 \(\times 10^{12} \) (thermal) kWh (45 quads) of energy, less than half of current US consumption (table 1). This level of energy production would require about 159 million ha of land (17% of US land area). This percentage is an estimate and could increase or decrease, depending on how the technologies evolve and energy conservation is encouraged.

Worldwide, approximately 408 quads of all types of energy are used by the population of more than 6 billion people (table 1). Using available renewable energy technologies, an estimated 200 quads of renewable energy could be produced worldwide on about 20% of the land area of the world. A self-sustaining renewable energy system producing 200 quads of energy per year for about 2 billion people would provide each person with about 5000 liters of oil equivalents per year—approximately half of America’s current consumption per year, but an increase for most people of the world (Pimentel et al. 1999).

The first priority of the US energy program should be for individuals, communities, and industries to conserve fossil fuel resources by using renewable resources and by reducing consumption. Other developed countries have proved that high productivity and a high standard of living can be achieved with the use of half the energy expenditure of the United States (Pimentel et al. 1999). In the United States, fossil energy subsidies of approximately $40 billion per year should be with-
Articles

drawn and the savings invested in renewable energy research and education to encourage the development and implementation of renewable technologies. If the United States became a leader in the development of renewable energy technologies, then it would likely capture the world market for this industry (Shute 2001).

Conclusion

This assessment of renewable energy technologies confirms that these techniques have the potential to provide the nation with alternatives to meet approximately half of future US energy needs. To develop this potential, the United States would have to commit to the development and implementation of non–fossil fuel technologies and energy conservation. The implementation of renewable energy technologies would reduce many of the current environmental problems associated with fossil fuel production and use.

The immediate priority of the United States should be to speed the transition from the reliance on nonrenewable fossil energy resources to reliance on renewable energy technologies. Various combinations of renewable technologies should be developed, consistent with the characteristics of the different geographic regions in the United States. A combination of the renewable technologies listed in table 3 should provide the United States with an estimated 45 quads of renewable energy by 2050. These technologies should be able to provide this much energy without interfering with required food and forest production.

If the United States does not commit itself to the transition from fossil to renewable energy during the next decade or two, the economy and national security will be at risk. It is of paramount importance that US residents work together to conserve energy, land, water, and biological resources. To ensure a reasonable standard of living in the future, there must be a fair balance between human population density and use of energy, land, water, and biological resources.

Acknowledgments

We thank the following people for reading an earlier draft of this article and for their many helpful suggestions: Louis A. Albright, Cornell University, Ithaca, NY; Allen Bartlett, University of Colorado, Boulder, CO; Richard C. Duncan, Institute on Energy and Man, Seattle, WA; Andrew R. B. Ferguson, Optimum Population Trust, Oxon, United Kingdom; Tillman Gerngross, Dartmouth College, Hanover, NH; O. J. Lougheed, Irkutsk, Siberia; Norman Myers, Oxford University, United Kingdom; Marcia Pimentel, Cornell University, Ithaca, NY; Nancy Rader, California Wind Energy Association; Kurt Roos, US Environmental Protection Agency, Washington, DC; Frank Roselle-Calle, King’s College, London; Peter Salonius, Canadian Forest Service, Fredericton, New Brunswick, Canada; Jack Scurllock, Oak Ridge National Laboratory, Oak Ridge, TN; Henry Stone, Ithaca, NY; Ted Trainer, University of New South Wales, Australia; Mohan K. Wali, Ohio State University, Columbus, OH; Paul B. Weisz, State College, PA; William Jewell, Cornell University, Ithaca, NY; Walter Youngquist, Eugene, OR.

References cited

